This site uses cookies to improve your experience. To help us insure we adhere to various privacy regulations, please select your country/region of residence. If you do not select a country, we will assume you are from the United States. Select your Cookie Settings or view our Privacy Policy and Terms of Use.
Cookie Settings
Cookies and similar technologies are used on this website for proper function of the website, for tracking performance analytics and for marketing purposes. We and some of our third-party providers may use cookie data for various purposes. Please review the cookie settings below and choose your preference.
Used for the proper function of the website
Used for monitoring website traffic and interactions
Cookie Settings
Cookies and similar technologies are used on this website for proper function of the website, for tracking performance analytics and for marketing purposes. We and some of our third-party providers may use cookie data for various purposes. Please review the cookie settings below and choose your preference.
Strictly Necessary: Used for the proper function of the website
Performance/Analytics: Used for monitoring website traffic and interactions
BIM is the life-cycle modeling and management of the built environment supported by digital technology. Forget the 3D visualization distraction for a moment and let’s focus on the important component of the BIM acronym; the “I” for information. INTRODUCTION.
On top of the challenges presented by relying on 2D design and pre-construction drawings on AutoCAD , ITC’s biggest challenge was improving the visualisation of projects from the first step to the final product. Improved visibility of data throughout the building lifecycle. Visualized complete project in 3D.
The efficient life-cycle management of the built environment will not happen until change management is accelerated. This has included “CAD” using PEAC, GDS, MicroGDS, AutoCAD, MicroStation, SketchUp, ArchiCAD and “Raster” using Cadcore/Hitachi PrEditor, ScanGraphics, Scan2CAD, etc. Raymond Issa, Ph.D.,
The efficient life-cycle management of the built environment will not happen until change management is accelerated. This has included “CAD” using PEAC, GDS, MicroGDS, AutoCAD, MicroStation, SketchUp, ArchiCAD and “Raster” using Cadcore/Hitachi PrEditor, ScanGraphics, Scan2CAD, etc. Raymond Issa, Ph.D.,
The additional infrastructure needs or talent required to be successful in life-cycle data collection & analysis. The Future of Visual Progress Tracking and Documentation in Construction. The potential value in analyzing data and how you can use it to drive better decision-making.
We organize all of the trending information in your field so you don't have to. Join 116,000+ users and stay up to date on the latest articles your peers are reading.
You know about us, now we want to get to know you!
Let's personalize your content
Let's get even more personalized
We recognize your account from another site in our network, please click 'Send Email' below to continue with verifying your account and setting a password.
Let's personalize your content